Fires in farm buildings cost Missouri agriculture nearly $1 million per year. This loss could be reduced substantially through better site selection use of less flammable materials and some simple fire stopping techniques. This publication describes some of the construction features that you can use to reduce the risk of fire loss on your farm.
Fire normally starts within a single area or room. It spreads over surfaces and penetrates combustible coverings, moving to adjacent areas either directly or through natural openings in the building construction.
Buildings collapse when the fire has progressed to the point where structural members are weakened by either burning or excessive heat.
Risk of loss is reduced whenever we use construction practices that slow or prevent the normal progression of fire.
Location
Block potential fire passages during construction
Most modern agricultural buildings can benefit from fire stopping in the area above the ceiling and under the roof. This relatively open space provides a natural tunnel for fire to move throughout the building once it has burned through the ceiling.
An easy way to provide fire stops for this area is to cover both sides of a truss with 1/2-inch gypsum board. The board should cover the area between the ceiling and the underside of the roof completely. One of these fire stops should be over each cross-partition in the building or approximately every 50 feet for buildings with large rooms.
Properly constructed walls can be used as fire stops in buildings where it is desirable to provide more control over fire spread between adjacent areas. These stops (commonly called fire walls) can provide time to remove animals or equipment from a portion of a building.
Consider using a fire wall whenever two areas with different risk levels are contained in the same building. For example, a shop constructed in one end of a machinery storage building should be separated from the machinery storage area by a fire wall. Other examples include separation of utility rooms or heating plants from other areas of the building.
Fire walls need not be elaborate. In many cases, more careful selection of materials combined with conventional construction can provide valuable protection. A standard 2 x 4 stud wall covered with 1/2-inch gypsum board provides a 40-minute fire rating. Ratings for other types of wall construction can be found in Table 1.
Table
1. Fire resistance ratings for various types of partition
wall construction.
Construction | Fire resistance rating (minutes) |
---|---|
Wood frame covered (both sides) with: | |
1/2-inch fiberboard | 10 |
1/2-inch fiberboard, flame proofed | 10 |
1/4-inch plywood | 10 |
3/4-inch T&G boards | 20 |
3/8-inch gypsum wallboard | 25 |
1/2-inch gypsum wallboard | 40 |
5/8-inch gypsum wallboard (type X) | 60 |
Cement asbestos board 3/16-inch thick | 10 |
3/16-inch cement asbestos board over 3/8-inch gypsum board | 60 |
Masonry construction | |
4-inch blocks plastered both sides | 60 |
6-inch blocks | 60 |
6-inch concrete | 240 |
Flame spread or fire ratings are obtained by comparing the burn rate for a material with the burn rates obtained from the standardized materials, red oak lumber and asbestos cement board. Flammable rates for these materials are assigned values of 100 and 0, respectively, and other materials are given values that represent a comparison with these numbers. For example, a material that burns twice as fast as red oak would receive a flame spread rating of 200.
Flame spread ratings are sometimes grouped into classes, providing a general indication of flammability. Class ratings and their associated flame spread ratings are shown in Table 2.
Table
2. Class, flame spread and suggested use for interior building
materials.
Class | Flame spread | Use |
---|---|---|
A | 0-25 | Farm shops, heating plant rooms, fuel storage, high-risk areas |
B | 26-75 | Confinement buildings without heating system |
C | 76-200 | Low-risk buildings, such as hay storage |
D | 201-500 | Do not use without protective covering |
500+ | Do not use without protective covering |
Fire-retardant treatment
The pressure treatment process is similar to that used with the more familiar wood preserving chemicals. Special waterborne salts are used that limit the amount of combustible products released when wood is exposed to flame. Some of the more commonly used chemicals include monammonium and diammonium phosphate, ammonium sulfate, zinc chloride, sodium tetraborate and boric acid.
Fire-retardant treatment does not prevent wood from burning, nor does it slow up penetration of fire in structural members. Its main benefit is to slow the rate of surface spread. It is very questionable whether the cost of pressure-treated, fire-retardant wood can be justified for agricultural buildings.
Fire-retardant paints have low surface flammability and tend to expand or "foam" when exposed to fire. This expanded layer acts as an insulation to help keep heat away from the flammable surface under the paint. Properly applied coatings can reduce the flame spread for wood products to 25 or less and they are being applied routinely to some factory finished building products.
Metal frame buildings
Temperatures build up very quickly during early stages of a fire and often spread through a building even more rapidly than the fire itself. As soon as metal structural members get hot, their strength decreases rapidly. The result can be complete structural collapse long before actual flames spread through the building.
Metal frames can be protected from heat by encasing them in concrete, by constructing an insulated firewall around them, or by spray-on insulating coatings. A 1-inch thickness of sprayed-on asbestos fiber yields a two-hour fire rating for an 8-inch steel I beam. An unprotected beam has a 10 minute fire rating. In most cases, protective cost probably is not warranted for farm buildings. An exception might be the farm shop, which is a relatively high-risk area usually containing high-value equipment.
First aid for fires
To order, request G1910 , Improving Fire Resistance of Farm Buildings (25 cents).
Publication #: G1910
Copyright 1998 University of Missouri. Published by University Extension, University of Missouri-Columbia. Please use our feedback form for questions or comments about this or any other publication contained on the XPLOR site. Make sure you note the publication number in your inquiry.
Department
of Agricultural Engineering, University of Missouri-Columbia
Agricultural publication G01910 Reviewed October 1,
1993
Issued in furtherance of Cooperative Extension Work Acts of
May 8 and June 30, 1914, in cooperation with the United States
Department of Agriculture. Ronald J. Turner, Director, Cooperative
Extension Service, University of Missouri and Lincoln University,
Columbia, Missouri 65211. University Extension does
not discriminate on the basis of race, color, national origin,
sex, religion, age, disability or status as a Vietnam-era
veteran in employment or programs. If you have special needs
as addressed by the Americans with Disabilities Act and need
this publication in an alternative format, write ADA Officer,
Extension and Agricultural Information, 1-98 Agriculture Building,
Columbia, MO 65211, or call (573) 882-7216. Reasonable efforts
will be made to accommodate your special needs.
Disclaimer and Reproduction Information: Information in NASD does not represent NIOSH policy. Information included in NASD appears by permission of the author and/or copyright holder. More