The Biology & Physiology of Cholinesterase
Running a Cholinesterase Program
Matthew Keifer MD MPH
Associate Professor
University of Washington
Objectives

Review:

Purpose of Monitoring

Basic biology of cholinesterase and cholinesterase inhibiting pesticides, basic enzymology

History and physical exam of the handler

Appropriate testing methods and interpretation of monitoring results

Responses to cholinesterase depression

How to investigate for false positives

Setting up a cholinesterase monitoring in the clinic/medical system

Quality assurance evaluation
What ChE monitoring accomplishes?

- Identifies hazardous conditions/practices
- Increases worker/employer hazard awareness
- Assists in medical return to work
- Avoids problems from chronic exposure
- Influences economic decisions:
 - Increases costs of production
 - May influence choice of pesticide
Biology of Cholinesterase

- Present from paramecia to sapiens
- Very Fast enzyme (perfect kinetics)
- Ubiquitous in the human body
- Critical for many nervous system functions
What is it?

- An enzyme with a sulfhydryl active site
- Produced in tissues and blood
- Hydrolyses acetylcholine
- Present in the autonomic, central and peripheral nervous systems

- Excellent web page on the enzyme
 http://www.weizmann.ac.il/Structural_Biology/Pages/Sussman/webpage2/kurt/che.html
What it Does Chemically

Hydrolysis of Acetylcholine: A key neurotransmitter

- Thought to mediates a nucleophilic attack on carbonyl carbon acylating it and liberating choline and vinegar. Old model explains much but is not accurate.
Two Kinds of ChE in the Body

- Different enzymes with some behaviors in common
- Plasma Cholinesterase
 - Butyrylcholinesterase, pseudocholinesterase, PChE, or just cholinesterase and ChE
- RBC Cholinesterase
 - True cholinesterase, acetylcholinesterase, or AChE
Plasma ChE?

- Floats freely in plasma
- Made by liver
- Rapid recovery from depression
- Rapid replacement by new synthesis
- Liver disease may affect levels
- Sensitive to most ChE inhibitor pesticide exposures
Red Blood Cell Cholinesterase

Bound to red blood cells
Made at the same time as the Rbc's
Recovery from depression 0.8%/day
Slower to depress, slower to recover
Low RBC count may cause lower levels
Identical to neuronal ChE
What Cholinesterase Does: Physiologically

- Autonomic Nervous System
 - Parasympathetic
 - Presynaptic Sympathetic

- PNS
 - Skeletal muscle

- CNS
 - Memory & others
What It Does: Neurochemically First understand Acetylcholine

(a) Resting state

(b) Action potential causes \(\text{Ca}^{2+} \) influx which causes vesicles to fuse with membrane

(c) Acetylcholine is released and diffuses to receptors

(d) Opening of receptor channels permits flow of ions
Cholinesterase

Found at the synapse
It turns off the chemical messenger
When inhibited the messenger builds
Overstimulation results
Why do we have this enzyme in the blood?

- A buffer for poisons
 - Potatoes
 - Solanaceous alkaloids
- The Calabar Bean
 - Physiostigma venenosum
- Green Mamba Snake
 - Fascilin inhibits AChE
Cholinesterase Pharmacology

- Alzheimers Treatment with ChE inhibitors
 - Tacrine, Donepezil, Metrifonate, Galantamine
 - Metrifonate is converted to DDVP
- Myasthenia Gravis
 - Edrophonium,
 - Pyridostigmine bromide
- Glaucoma
- Prophylaxis for Nerve Gas Attacks
Pesticides That Inhibit Cholinesterase

- **Organophosphates**
 - Inhibit irreversibly
 - “aging of complex”
 - ChE must be replaced by the body

- **Carbamates**
 - Inhibit temporarily
 - No “aging”
 - Reversal is rapid and level related
 - ChE reactivates and is ready to go
Oral vs. Dermal LD$_{50}$ of some OPs

<table>
<thead>
<tr>
<th>Organophosphate</th>
<th>Oral mg/kg</th>
<th>Dermal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phorate</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Azinphos-Methyl</td>
<td>13</td>
<td>220</td>
</tr>
<tr>
<td>Methamidaphos (rat)</td>
<td>32</td>
<td>94</td>
</tr>
<tr>
<td>Oxydemeton (rat)</td>
<td>75</td>
<td>250</td>
</tr>
<tr>
<td>Diazinon (rat)</td>
<td>108</td>
<td>900</td>
</tr>
<tr>
<td>Phosalone (rat)</td>
<td>130</td>
<td>1500</td>
</tr>
<tr>
<td>Chlorpyrifos (rat)</td>
<td>155</td>
<td>202</td>
</tr>
<tr>
<td>Malathion (rat)</td>
<td>1375</td>
<td>4444</td>
</tr>
</tbody>
</table>
N-Methyl-Carbamates

<table>
<thead>
<tr>
<th>Pesticide</th>
<th>Oral mg/kg</th>
<th>Dermal mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldicarb</td>
<td>0.5</td>
<td>3</td>
</tr>
<tr>
<td>Carbaryl</td>
<td>5 -13</td>
<td>1000 - 2400</td>
</tr>
<tr>
<td>Propoxur!</td>
<td>100</td>
<td>1000 - 2400</td>
</tr>
<tr>
<td>Oxamyl</td>
<td>5.4</td>
<td>3000</td>
</tr>
<tr>
<td>Carbofuran</td>
<td>5-13</td>
<td>>1000</td>
</tr>
<tr>
<td>Methomyl</td>
<td>17-24</td>
<td>>5000</td>
</tr>
</tbody>
</table>
Toxicity of ChE Inhibitors

Mild cases:
 tiredness, weakness, dizziness, nausea and blurred vision

Moderate cases:
 headache, sweating, tearing, drooling, vomiting, tunnel vision, and twitching

Severe cases:
 abdominal cramps, urinating, diarrhea, muscular tremors, staggering gait, pinpoint pupils, hypotension (abnormally low blood pressure), slow heartbeat, breathing difficulty, and possibly death

Extoxnet http://ace.ace.orst.edu/info/extoxnet/
Why is ChE Testing Useful?

• ChE reflects the toxicant on its target
• Integrates exposure over time
• The test is widely available
• A blood sample all that is needed
• BUT!
 – Baseline is needed
 – Good lab methods needed
 – Interpretation and timing important
 – Sample handling important
When Do Testing?

Class I and II Carbamates & Organophosphates

DANGER or WARNING

LD 50 of < 50 mg oral or 100 dermal
LD 50 of >50 <500 oral or <1000 dermal

Threshold: 50 hrs in 30 days
How to Interpret Cholinesterase Monitoring Data: Why Baselines?

Normal Range of cholinesterase activity
Plasma Normal Population

Plasma Cholinesterase Hanoi Blood Bank

Std. Dev = .51
Mean = 2.19
N = 100.00
Variation, Month to Month

- Relatively Stable in the Population
Carbamates Alone
Is it worth testing?

Figure 4. Reversibility of inhibition by Sevin after dilution of whole blood. Concentrations of Sevin (in undiluted sample) from top: 1, 10 and 100 ng/10 ul. Concentrations of paraoxon: 5, 50 and 500 ng/10 ul.
History and Physical of Handler

Presence of ChE inhibitor based symptoms

Experience with pesticides
Attitude toward inhibitors
Medications
Previous medical history

Probable contraindications
Asthma/COPD
G.I. Ulcer

Treatment with ChE inhibitor
myasthenia gravis
Alzheimers
glaucoma

Other possible problems
Anemia
degenerative diseases of the central nervous system
chronic colitis
psychosis
Baselines

• Obtain before exposure
 – 30 days since last handling
• Maintain records for future comparison
• If its abnormally low
 – Recheck, average or discard
• More tests are better than less
 – What does regression to the mean mean?
How Often to Test?

• Retest with the same laboratory, same methods
• Retesting every 30 days
 – When to do follow-up?
 • Rules state within 3 days of reaching threshold
 – Why are you testing?
 • To prevent future exposure
 • To evaluate work exposure
 – Decrease frequency with experience
How to Interpret Results

Large difference between upper and lower range of normal

20% depression - Significant

30% AChE - Removal*

50% AChE - Poisoning

40% PChE - Removal*

60% PChE - Poisoning

*California, WHO and ACGIH recommendations on removal thresholds
What Response to Depressed Results

- Act promptly
 - You’re already late
- Evaluate for false positives
- Assure removal if meets threshold
- Be sure the workplace is evaluated
- Communicate with worker and with employer
 - The teachable moment
False Positives

Plasma Cholinesterase

- Drugs: therapeutic and recreational
 - BCPs, metaclopramide, cocaine?
- Liver Disease - alcoholism
- Congenital Deficiency (3%)
- Pregnancy
- Nephrotic syndrome
- Carbon disulfide, organic mercury

RBC Cholinesterase

- Drugs and Reticulocytosis
False Negatives

- Hard to find, Hard to know
- Lack of depression when depression is truly present
 - Laboratory phenomena
 - Low baseline
 - Sample confusion
Medical Removal

• What else can they do?
• Thinning? Probably not in sprayed orchards*
• Know the operation
• General work

Return to Work

Return to regular duty
When both PChE
and AChE get to 80%

File a Claim?
If worker is sick, yes
Quality Assurance Policing Your System

- Records and Response
 - Dry run your response
 - Dry run you communication options
 - Check out removal options

- Test the quality of your ChE laboratory
 - Blinded split samples to laboratory
 - How far off should they be?
 - If they approach thresholds, you’re in trouble
Responsibilities of Medical Supervisor

- Know the rules of Monitoring (WA state)
 - Obligations regarding confidentiality
- Know something of the pesticide practices
 - Which pesticides, application frequency, PPE
- Know your population
 - Language, culture, beliefs
- Know how to respond to a depression
 - Check PPE & pesticides, removal options
- Know the non-pesticide related causes of depression
Responsibilities of Medical Supervisor

• Assure quality performance and worker protection
 – False positives
 – False negatives
 – Laboratory accuracy
 – Response to depressions
 • Prompt
 • Appropriate
 – Advise employer
 – Counsel worker
Abnormal Baselines
Plasma ChE

• Congenital cholinesterase deficiency
 – 3% of Anglos, 1% of Blacks carry the gene
 – May influence susceptibility to ChE inhibitors
 – Will have low baseline values for PChE
 – Will have normal RBC ChE values